
21UCRL-LR-105821-99-1

The National Ignition Facility (NIF)
design team is developing the inte-

grated computer control system (ICCS),
which is based on an object-oriented frame-
work applicable to event-driven control
systems. The framework provides an open,
extendable architecture that is sufficiently
abstract to construct future mission-critical
control systems. Supervisory software is
constructed by extending the reusable
framework components for each specific
application. The framework incorporates
services for database persistence, system
configuration, graphical user interface, sta-
tus monitoring, event logging, scripting
language, alert management, and access
control. More than twenty collaborating
software applications are derived from the
common framework.

The ICCS consists of 300 front-end pro-
cessors (FEPs) attached to 60,000 control
points coordinated by a supervisory sys-
tem. Computers running either Solaris or
VxWorks operating systems are networked
over a hybrid configuration of switched
fast Ethernet and Asynchronous Transfer
Mode (ATM). ATM carries digital motion
video from sensors to operator consoles. A
brief summary of performance require-
ments follows (Table 1).

The ICCS architecture was devised to
address the general problem of providing

distributed control for large scientific
facilities that do not require real-time
supervisory controls. The framework
uses the client-server software model
with event-driven communications to
distribute control. The framework is inter-
operable among different kinds of com-
puters and transparently distributes the
software objects across the network by
leveraging a Common Object Request
Broker Architecture (CORBA).

INTEGRATED COMPUTER CONTROL SYSTEM

P. J. VanArsdall R. A. Saroyan

R. C. Bettenhausen J. P. Woodruff

F. W. Holloway

TABLE 1. Selected ICCS performance requirements.

Requirement Performance

Computer restart <30 minutes

Postshot data recovery <5 minutes

Respond to broad-view <10 seconds
status updates

Respond to alerts <1 second

Perform automatic alignment <1 hour

Transfer and display digital 10 frames per
motion video second

Human-in-the-loop controls within 100 ms
response

22

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

CORBA DISTRIBUTION

Past architectural approaches to distributed controls have relied on the tech-
nique of building large-application programming interface (API) libraries to give
applications access to functions implemented throughout the architecture. This
practice results in large numbers of interconnections that quickly increases the sys-
tem complexity and make software modification much more difficult. To address
this problem in the ICCS, software objects are distributed in a client-server archi-
tecture using CORBA.

CORBA is a standard developed by a consortium of major computer vendors
to propel the dominance of distributed objects on local area networks and the
World Wide Web. The best way to think of CORBA is as the universal Òsoftware
bus.Ó CORBA is a series of sophisticated, but standard sockets into which software
objects can Òplug and playÓ to interoperate with one another, even when made by
different vendors. By design, CORBA objects interact across different languages,
operating systems, and networks.

At a greatly simplified level, the major parts of CORBA are shown in the
figure below. The interface types and methods provided by the server objects and
used by the clients are defined by an industry standard Interface Definition
Language (IDL). The IDL compiler examines the interface specification and gener-
ates the necessary interface code and templates into which user-specific code is
added. The code in the client that makes use of CORBA objects is written as if the
server was locally available and directly callable. Each computer on the network
has an object request broker that determines the location of remote objects and
transparently handles all communication tasks.

�

Software bus

(network)

Server objects�
(FEP)

Object�
request�
broker

Object�
request�
broker

Server software�
templates

Client software�
templates

Interface Definition�
Language (IDL)

IDL compiler

Client application�
(GUI)

Traditional client/server�
interactions

�Software bus network implementation for CORBA distribution.
(40-00-0298-0341pb01)

23

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

FIGURE 1. Photograph
of the NIF computer
control room.
(40-00-1298-2628pb01)

Over twenty distributed software appli-
cations built from the common framework
will operate the NIF control system hard-
ware from a central control room (Figure 1).
The ICCS software framework is the key to
managing system complexity and, because
it is fundamentally generic and extensible,
it is also reusable for the construction of
future projects.

Control System
Architecture

The ICCS is a layered architecture con-
sisting of FEPs coordinated by a superviso-
ry system (Figure 2). Supervisory controls,
which are hosted on UNIX workstations,
provide centralized operator controls and
status, data archiving, and integration ser-
vices. FEP units are constructed from
VME/VXI-bus or PCI-bus crates of embed-
ded controllers with interfaces that attach to
control/monitor points (e.g., motors and
calorimeters). FEP software implements the
distributed services needed to operate the
hardware by the supervisory system.
Precise triggering of fast diagnostics and
controllers is handled during a two-second
shot interval by the timing system, which is
capable of providing triggers to 30-ps accu-
racy and stability. The software is distribut-
ed among the computers and provides
plug-in software extensibility for attaching
control/monitor points and other software
services by using the CORBA protocol.

The operator console provides the
human interface in the form of operator dis-
plays, data retrieval and processing, and
coordination of control functions.
Supervisory software is partitioned into sev-
eral cohesive subsystems, each of which
controls a primary NIF subsystem such as
alignment or power conditioning. Several
databases are incorporated to manage
experimental and operations data. The sub-
systems are integrated to coordinate opera-
tion of laser and target area equipment.

FEPs perform sequencing, data acquisi-
tion, process control, and data reduction. The
software framework includes a standard way
for FEP units to be integrated into the super-
visory system by providing the common dis-
tribution mechanism coupled with software
patterns for hardware configuration, com-
mand, and status monitoring functions.

A segment of the control system accom-
modates industrial controls for which stan-
dard commercial solutions already exist.
The segment is composed of a network of
programmable logic controllers that reside
below the FEP and attach to field devices
that functionally control, for example, vac-
uum systems, argon gas in the beam tubes,
and thermal gas conditioning for amplifier
cooling. This segment also observes the
independent safety interlock system, which
monitors doors, hatches, shutters, and
other sensors to establish and display the
hazard levels in the facility. Potentially haz-
ardous equipment is permitted to operate
only when conditions are safe. Interlocks

24

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

function autonomously to ensure safety
without dependency on the rest of the con-
trol system.

There are eight supervisory software
applications that conduct NIF shots in col-
laboration with 19 kinds of FEPs as shown
in Figure 3. The ICCS is partitioned into
several loosely coupled systems that are
easier to design, construct, operate, and
maintain. Each subsystem is composed of
a supervisor and associated FEPs. The
eighth supervisor is the shot director,
which is responsible for conducting the
shot plan, distributing the countdown
clock, and coordinating the other seven
supervisory applications.

Seven subsystems comprise the
primary supervisory controls. The
Alignment Supervisor provides coordina-
tion and supervision of laser wavefront
control and laser component manual
and automatic alignment. The Laser
Diagnostics Supervisor provides functions

for diagnosing performance of the laser by
collecting integrated, transient, and image
information from sensors positioned in
the beams. The Optical Pulse Generation
Supervisor provides temporally and spa-
tially formatted optical pulses with the
correct energetics and optical characteris-
tics required for each of the beams. The
Target Diagnostics Supervisor coordinates
the collection of data from a diverse and
changing set of instruments. The Power-
Conditioning Supervisor is responsible for
high-level control and management of
high-voltage power supplies that fire the
main laser amplifiers. The Pockels Cell
Supervisor manages operation of the plas-
ma electrode Pockels cell optical switch
that facilitates multipass amplification
within the main laser amplifiers. The Shot
Services Supervisor provides monitoring
of environmental and safety parameters as
well as control of programmable logic
controller subsystems.

Operator consoles

Switched
network

Database

File servers

Actuators Data
Acquisition Utilities Safety

interlocks

Power
PC-based
VME/VXI

crates
Programmable
logic controllers

Sun Solaris
UltraSparc workstations

Front-end processors Industrial controls

Intel-based Windows NT

Timing systems

FIGURE 2. Integrated
computer control system
architecture.
(40-00-1298-2627pb01)

25

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

Computer System
and Network

Figure 4 shows the NIF computer and
network architecture, which is composed
of 30 UNIX workstations, 300 FEPs, and
several hundred more embedded con-
trollers (not shown). The main control
room contains seven graphics consoles,
each of which houses two workstations
with dual displays. The supervisors are
normally operated from a primary console,
although the software can easily be operat-
ed from adjacent consoles or remote
graphics terminals located near the front-
end equipment. File servers provide
archival databases as well as centralized
management services necessary for coordi-
nating the facility operation.

The network design utilizes both Ethernet
and ATM technologies to take advantage of
the best features of each. ATM provides
time-sensitive video transport, whereas
Ethernet provides connectivity for the large
majority of systems. The design utilizes

155 Mbit/s ATM and Ethernet at both 10
and 100 Mbit/s speeds, depending on
expected traffic requirements. The operator
consoles and file servers have both ATM and
100 Mbit/s Ethernet connections, while most
FEPs have either 10 or 100 Mbit/s connec-
tions made through Ethernet switches.
Given the low cost and performance advan-
tages of Ethernet switches relative to shared
Ethernet hubs, switches with 100 Mbit/s
uplinks will be used.

TCP/IP (Transmission Control Protocol/
Internet Protocol) is the protocol used for
reliable data transport between systems,
either over Ethernet or ATM. TCP provides
retransmission of packets in the event that
one is lost or received in error. The only
traffic not using TCP will be digitized video
and network triggers. Video is transferred
using the ATM adaptation layer 5 (AAL5)
protocol. Network triggers are broadcast to
many end-nodes simultaneously using
multicast protocols.

The network supports the transport of
digitized motion video in addition to the
more typical control, status, and shot data.

Shot integration

Supervisory subsystems

Application FEPs

Service FEPs

Shot
director

Target
diagnostics

Laser
diagnostics

Power
conditioningAlignment

Optical
pulse

generation

Switch
pulser

Laser
energyWavefront

Master
oscillator

Target
diagnostics

Power
conditioning

Plasma
pulser

Laser
power

Automatic
alignment

Industrial
controls

Preamplifier
module

Precision
diagnostics

Hartmann
image

processor

Alignment
controls

Digital
video Timing

Pockels cell
Shot

services

Beam
transport

Pulse
diagnostics

High-
resolution

CCD

FIGURE 3. Software
applications in the NIF
control system.
(40-00-0298-0324pb02)

26

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

The network transports video streams at
10 frames per second (about 25 Mbit/s)
between special FEPs that digitize camera
images and operator workstations that can
display at least two concurrent streams.
Video compression is not used because of
the high cost of encoding the video stream.

Digitized video is sent via the ATM appli-
cation program interface (API) using the
ATM quality of service capabilities. The API
provides an efficient method of moving
large, time-sensitive data streams, resulting
in higher frames/second rates with lower
central processing unit (CPU) utilization
than alternative approaches, which is an
important consideration for the video FEPs
and console workstations. Performance test-
ing of the prototype video distribution sys-
tem indicates that 55% of the FEP CPU
(300-MHz UltraSparc AXI) is used to broad-
cast three streams, while 10% of the operator
workstation CPU (300-MHz UltraSparc 3D
Creator) is utilized for each playback stream.

Estimates of the peak traffic require-
ments for the various subsystems were
analyzed as a basis for the network design.
The expected peak traffic flows between
subsystems in terms of messages per sec-
ond and message size were specified. This
data was combined and analyzed to deter-
mine peak throughputs into and out of
each network-attached device.

A discrete event simulation was created
to evaluate the performance of key net-
work scenarios. For example, it was shown
that Ònetwork triggersÓ in the millisecond
regime could be reliably broadcast
between computers in the network via the
user datagram protocol. One application
using network triggers is the arming of the
video FEPs to enable digitizing the laser
pulse during shots. The network trigger
tactic will save $250K over a hardware
implementation.

If bandwidth requirements increase in
the future, the network architecture allows

Two dual-monitor
workstations per console

Remote
workstations

Eight supervisory consoles

Front-end
processors

Front-end
processors

Users &
external

databases

Firewall

Core
100-Mbit/s

Ethernet
switch

Automatic
alignment

servers

24-camera
video

digitizers

Edge
Ethernet
switch

Edge
Ethernet
switch

ATM
155-Mbit/s

switch

Servers

13 edge
switches

300 FEPs
2150 loops 500 CCD cameras

) Legend

ATM OC-3 155 Mbit/s (fiber)

Ethernet 100 Mbit/s

Ethernet 10 and 100 Mbit/s

FIGURE 4. NIF comput-
er system and network
architecture.
(40-00-1298-2629pb01)

27

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

the integration of Gbit/s Ethernet and
622 Mbit/s ATM technologies in a relative-
ly straightforward manner.

Software Framework
The ICCS supervisory software frame-

work is a collection of collaborating abstrac-
tions that are used to construct the applica-
tion software. Frameworks1 reduce the
amount of coding necessary by providing
prebuilt components that can be extended to
accommodate specific additional require-
ments. The framework also promotes code
reuse by providing a standard model and
interconnecting CORBA backplane that is
shared from one application to the next.

Components in the ICCS framework are
deployed onto the file servers, workstations,
and FEPs, as shown generically in Figure 5.
Engineers specialize the framework for each
application to handle different kinds of con-
trol points, controllers, user interfaces, and
functionality. The framework concept
enables the cost-effective construction of the
NIF software and provides the basis for
long-term maintainability and upgrades.

The following discussion introduces the
framework components that form the basis
of the ICCS software.

ConfigurationÑa hierarchical organiza-
tion for the static data that define the hard-
ware control points accessible to the ICCS.
Configuration provides a taxonomic system

Dual servers Workstation

Network

Ethernet ATM

Workstation

Solaris

Integration services
• Configuration server
• Central system
) manager
• Message log server
• Alert manager
• Central reservation
) manager
• Machine history
) archiver
• Shot data archiver
• Shot setup server

Sample application
• Local system manager
• Application object
) factories
• Application function
) objects
• Application GUI model
• Alert subscriber
• Message log subscriber
• Local reservation
) manager
 - Application only -
• Shot life-cycle subscriber
• Local countdown

Sample front-end processor
• Local system manager
• Device/controller object factories
• Device objects
) Ð Commands
) Ð Status
) Ð Messages
) Ð Alerts
) Ð History
• Controller objects
• Local reservation manager
• Status monitor
• FEP function objects

Oracle
DMBS

User interface
• Status displays
• Control panels

Shot director
• (Sample application)
 plus
• Central countdown
• Shot life-cycle publisher

Solaris VxWorks

Solaris

Solaris

Emulated
device

Real
device

User interface
• Status displays
• Control panels

FIGURE 5. Deployment
of ICCS framework
objects into a sample
application and FEP on
networked computers.
(40-00-1298-2630pb01)

28

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

used as the key by which clients locate
devices (and other software services) on the
CORBA bus. During normal operation, con-
figuration provides to clients the CORBA
references to all distributed objects. An
important responsibility of configuration is
the initialization of FEPs during start-up.
Configuration data are stored in the
database and describe how and where the
control hardware is installed in the system.
Calibration data for sensors, setpoints for
alignment devices, and I/O channels used
by devices on interface boards are examples
of static data managed by configuration.
During ICCS start-up, this framework col-
laborates with an object factory located in
the FEP. Using the data and methods stored
in the configuration database, the object fac-
tory instantiates, initializes, and determines
the CORBA reference for each device and
controller object in the FEP.

Status MonitorÑa device that provides
generalized services for broad-view opera-
tor display of device status information
using the publisherÐsubscriber model of
event notification. The status monitor
operates within the FEP observing devices
and notifies other parts of the system
when the status changes by a significant
amount. Network messages are only gen-
erated when changes of interest occur.

Sequence Control LanguageÑa lan-
guage used to create custom scripting lan-
guages for the NIF applications. The service
automates sequences of commands execut-
ed on the distributed control points or other
software artifacts. After full implementation
of the design, operators will create and edit
sequences by selecting icons that represent
control constructs, Boolean functions, and
user-supplied methods from a visual pro-
gramming palette. The icons are then inter-
connected to program the sequence, and
any Boolean conditions or method argu-
ments needed are defined to complete the
sequence script.

Graphical User Interface (GUI)Ñthe
method through which all human interac-
tion with the ICCS will take place and
which will be displayed on control room
consoles or other workstations in the facility.
The GUI is implemented as a framework to
ensure consistency across the applications.

Commercial GUI development tools are
used to construct the display graphics. This
framework consists of guidelines for look
and feel as well as many common graphical
elements.

Message Log ServerÑa device that
provides event notification and archiving
services to all subsystems or clients within
the ICCS. A central server collects incom-
ing messages and associated attributes
from processes on the network, writes
them to appropriate persistent stores, and
also forwards copies to interested
observers such as GUI windows.

Alert System ManagerÑa component
that raises an alert for any application
encountering a situation that requires
immediate attention, which then requires
interaction with an operator for the control
system to proceed. The alert system
records its transactions so that the data can
be analyzed after the fact.

Reservation ManagerÑa system that
manages access to devices by giving one
client exclusive rights to control or other-
wise alter a control/monitor point. The
framework uses a lock-and-key model.
Reserved devices that are ÒlockedÓ can
only be manipulated if and when a client
presents the Òkey.Ó

System ManagerÑa component that
provides services essential for the integrat-
ed management of the ICCS computer net-
work. This component ensures that neces-
sary processes and computers are operat-
ing and communicating properly. Services
include orderly system start-up, shut-
down, and watchdog process monitoring.

Machine History ArchiverÑa system
that gathers information for analysis about
NIF operational performance to improve
efficiency and reliability. Examples of such
information are component adjustments,
abnormal conditions, operating service,
periodic readings of sensors, and reference
images.

Generic FEPÑa component that pulls
together the distributed aspects of the
other frameworks (in particular the system
manager, configuration, status monitor,
and reservation frameworks) by adding
unique classes for supporting device and
controller interfacing. These classes are

29

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

responsible for hooking in CORBA distri-
bution as well as implementing the cre-
ation, initialization, and connection of
device and I/O controller objects. The
generic FEP also defines a common hard-
ware basis including the processor archi-
tecture, I/O board inventory, device
drivers, and field-bus support. The FEP
application developer extends the base
software classes to incorporate specific
functionality and control logic.

Shot Data ArchiverÑa server working
in collaboration with the System Manager
to assure that requested shot data are
delivered to a disk staging area. The ICCS
is responsible for collecting the data from
diagnostics, making the data immediately
available for Òquick lookÓ analysis, and
delivering the data to an archive.

Shot Setup ServerÑa server working
in collaboration with the ICCS shot direc-
tor to manage shot setup plans. These
plans contain the experimenterÕs goals

for a shot and the hardware setup derived
from the goals.

Software Development
Environment

The ICCS incorporates Ada95, CORBA,
and object-oriented techniques to enhance
the openness of the architecture and long-
term maintainability of the software. C++ is
also supported for the production of graphi-
cal user interfaces and the integration of
commercial software. Software development
of an expected 500,000 lines of code is man-
aged under an integrated software engineer-
ing process (Figure 6) that covers the entire
life cycle of design, implementation, and
maintenance. The object-oriented design is
captured in the Rose design tool in UML
(unified modeling language) notation that
maintains schematic drawings of the soft-
ware architecture.

Requirement
specification

Design
description

Object-oriented
design tool

Object
model

NIF
software

Ada language
editor

Engineers write
code details

Engineers model
software framework

Interface
specification

Ada host
compiler

Ada cross
compiler

Unix
target

Real-time
target

Target
architectures

Object request broker
distribution

Architecture neutral

Automatic
code generation
of specifications

VxWorks PowerPCSun Sparc

Reverse
engineering

Reverse
engineering

FIGURE 6. Flowchart of
the ICCS software engi-
neering process incorpo-
rating model-driven
design techniques.
(40-00-1298-2631pb01)

30

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

Developers analyze detailed requirements
and express them as scenarios that help
determine how the software will be orga-
nized. In essence, the Rose tool is used to
model the public interfaces and interactions
between major software entities (i.e., the
classes). Rose automatically generates Ada
code specifications corresponding to the
class interface and type definitions. The
developer fills in the detailed coding neces-
sary to implement the private contents of
each class. Rose generates IDL for classes
that are distributed, which is passed through
the IDL compiler to generate Ada or C++
skeleton code as before. The design descrip-
tion is a narrative document that explains
the object-oriented model and contains other
information necessary for implementation
and maintenance.

Source code is compiled for a variety
of target processors and operating sys-
tems. Current development is either
self-hosted to Solaris on Sparc processors

or cross-compiled for VxWorks on
PowerPC processors. The models, sources,
binaries, and run-time images are version-
controlled by the Apex configuration
management system, which allows the
frameworks and applications to be
independently developed by different
engineers, each having a protected
view of the other components.

Summary
The ICCS is being developed using the

iterative approach to software construction2

that is proven effective for projects whose
requirements continue to evolve. Five itera-
tions in the ÒLightÓ series (Figure 7) are
planned leading to facility deployment in
2000 when the first 8 of the 192 beams will
be operated. Each new release will follow
an updated plan addressing the greatest
risks to the architecture while increasing the
functionality delivered to the Project.

Sunlight

Searchlight

Spotlight

Torchlight

Flashlight

Penlight

Nightlight

Full�
system

Full�
automation

Hardware�
integration

Shot�
coordination

Framework�
enhancements

Production�
prototypes

Production�
releases

Sep 1999 Apr 2000 Sep 2000 Sep 2002

First bundle First bay NIF

Oct 2003

Cooperative�
actions

Apr 1999

Vertical�
slices

Tied to first-�
bundle availability

Oct 1998

Key

Code�
name

Theme

Due date

FIGURE 7. Light series
of NIF software
construction.
(40-00-1298-2632pb01)

31

INTEGRATED COMPUTER CONTROL SYSTEM

UCRL-LR-105821-99-1

The first release, ÒNightlight,Ó was com-
pleted this fall and submitted to indepen-
dent test. Nightlight delivered 120,000
source lines of tested codeÑabout 20% of
the anticipated totalÑwhich exercised the
framework in initial vertical slices of all
supervisory and FEP applications.
Nightlight also established an independent
test process and the procedures by which
quality software could be assured.

Construction of the ICCS incorporates
many of the latest advances in distributed
computer and object-oriented software
technology. Primary design goals are to
provide an extensible and robust architec-
ture that can be maintained and upgraded
for decades. Software engineering is a
managed process utilizing model-driven
design to enhance the product quality and
minimize future maintenance costs. The
ICCS framework approach permits soft-
ware reuse and allows the system to be
constructed within budget. As an added
benefit, the framework is sufficiently
abstract to allow future control systems to
take advantage of this work.

Acknowledgments
The authors wish to acknowledge the

contributions of the following colleagues
without whose efforts this work would not
be possible: G. Armstrong, R. Bryant, R.
Carey, R. Claybourne, T. Dahlgren, F.
Deadrick, R. Demaret, C. Estes, K. Fong,
M. Gorvad, C. Karlsen, B. Kettering, R.
Kyker, L. Lagin, G. Larkin, G. Michalak, P.
McKay (Sandia National Laboratories,
Albuquerque, NM), M. Miller, V. Miller
Kamm, C. Reynolds, R. Reed, W. Schaefer,
J. Spann, E. Stout, W. Tapley, L. Van Atta,
and S. West.

Notes and References
1. V. Swaminathan and J. Storey, Object Magazine,

April 1988, pp. 53Ð57.
2. B. Boehm, IEEE Computer, May 1988, pp. 61Ð72.

	INTEGRATED COMPUTER CONTROL SYSTEM
	TABLE 1. Selected ICCS performance requirements.
	CORBA DISTRIBUTION
	Control System Architecture
	Computer System and Network
	Software Framework
	Software Development Environment
	Summary
	Acknowledgments
	Notes and References

